Yes, I know we’ve gone through this discussion before (and the comment thread on that first entry is still a good summary of the counter-arguments). Air-to-air combat has become only a small part of what the air forces of the world are expected to do: ground support, while generally disdained by air force brass hats, is the most common combat task now. Here’s the state of play, according to Strategy Page, as far as the future of air combat is concerned:
The last decade has revolutionized air warfare, and air forces. This revolution was brought about by two technologies (smart bombs and UAVs) that have been around for decades but, over a decade ago, became reliable and capable enough to have a decisive effect on warfare. Now UAVs armed with smart bombs are poised to replace manned aircraft. Moreover, the proliferation of GPS guided weapons and short range guided missiles have greatly reduced the need for ground strikes by manned or unmanned aircraft. Since World War II, air forces have demanded, and obtained, a disproportionate share of military budgets. No more.
[. . .]
Underlying all of this is the appearance of so many cheaper, reliable, precision weapons in the last decade. This has changed tactics on the ground. While the air force doesn’t like to dwell on this, it’s the war on the ground that is decisive, not what’s going on in the air. This proliferation of precision has also changed the way smart bombs were designed. With the ability to put a weapon within a meter of the aiming point (using laser guidance) or 5-10 meters (using GPS), smaller is now better, at least in urban areas where there are a lot of civilians about, troops have changed the way they fight. There is more movement in urban warfare because of all this precision firepower, and fewer friendly fire casualties from bombs and artillery. But it’s not just the air force and their smart bombs that have brought this on. The army had precision missiles on the ground long before JDAM came along. Now the army has more of them. Thus, over the last five years, there has been a competition between the army and air force to develop smaller, cheaper and more precise, missiles and bombs.
[. . .]
The air force is not happy about the army having a large force of armed UAVs. Many air force generals believe the army should not have the MQ-1C, or at least not use them with weapons. That has already caused some spats in the Pentagon over the issue, but so far the army has prevailed.
The army argument is that these larger UAVs work better for them if they are under the direct control of combat brigades. The air force sees that as inefficient, and would prefer to have one large pool of larger UAVs, that could be deployed as needed. This difference of opinion reflects basic differences in how the army and air force deploy and use their combat forces. The army has found that a critical factor in battlefield success is teamwork among members of a unit, and subordinate units in a brigade. While the air force accepts this as a critical performance issue for their aircraft squadrons, they deem it irrelevant for army use of UAVs. Seeing army MQ-1Cs doing visual and electronic reconnaissance and firing missiles at ground targets, the air force sees itself losing control of missions it has dominated since its founding in 1948.
[. . .]
Meanwhile, the navy has taken the lead in developing larger, jet propelled UAVs like the 15 ton, X-47B. This UAV uses a F100-PW-220 engine, which is currently used in the F-16 and F-15. The X-47B can carry two tons of bombs or missiles and maneuver like a jet fighter. The X-47B is fast and agile enough to carry out air-to-air missions. With the right software, it can do this autonomously (without human intervention). This is being worked on, and the navy already has perfected the software that enables a UAV to land on aircraft carriers.
The coming decade will see more and more UAVs replacing manned aircraft. Thus after only a century in action, manned combat aircraft are on their way out.