British Columbia has a problem with their trees: too many of them are dead due to a massive increase in the population of the mountain pine beetle. The province is searching for ways to cope with the lumber from all the beetle-killed trees:
When life hands you lemons, goes the old saw, make lemonade. But what if life should hand you 18m hectares (44m acres) of dead trees? That is the problem faced by the province of British Columbia in Canada, which could lose over half its pine trees to the depredations of the fearsome mountain pine beetle. The beetle, no bigger than a grain of rice, is native to the forests of Western North America, where it kills trees by releasing a blue stain fungus that prevents the flow of water and nutrients. While the insect was historically kept in check by spells of cold weather, years of mild winters have unleashed an outbreak whose spread and severity is unlike anything seen previously.
As a result, the province is peppered with billions of dead, grey trees. If they are simply left standing, they will eventually either decay or burn in forest fires. In either case, they will release the carbon dioxide they stored while growing, swelling Canada’s total carbon footprint from 2000 to 2020 by 2%.
[. . .]
Canadian researchers have discovered other uses for BKP. Sorin Pasca, a graduate student at the University of Northern British Columbia, found that rain and snow conveniently wash out sugars and other organic compounds from dead pine trees. By grinding up the dry BKP and adding it to normal cement, he created a hybrid material that is waterproof, fire-resistant and pourable like concrete but that can be worked, cut and nailed or drilled like wood. The material, dubbed Beetlecrete, has already been used to make countertops, benches and planters.
Even more esoteric uses for BKP are on the table. Nanocrystalline cellulose, made up of microscopic needle-like fibres, is a lightweight, ultra-rigid material that can be extracted from wood pulp. Currently used to improve the durability of paints and varnishes, nanocrystalline cellulose promises strong, iridescent films that may find uses in industries ranging from optical computing to cosmetics. And, as a last resort, dead and fallen pine trees can feed British Columbia’s 800MW of bio-mass power plants, which burn pellets of BKP and other waste wood to generate electricity.