Quotulatiousness

January 31, 2024

Don’t RUIN your workbench with 2x4s (use these tips instead)

Filed under: Tools, Woodworking — Tags: , , , — Nicholas @ 02:00

Rex Krueger
Published 8 Nov 2023
(more…)

January 11, 2024

Art Deco Architecture

Filed under: Architecture, History, USA — Tags: , , , , , , — Nicholas @ 02:00

Prof. Lynne Porter
Published 22 Apr 2021

Lecture for Fairfield University class called “What We Leave Behind: the History of Fashion & Decor”.

January 3, 2024

QotD: Iron and steel

Filed under: History, Quotations, Science, Technology — Tags: , , , , , — Nicholas @ 01:00

I don’t want to get too bogged down in the exact chemistry of how the introduction of carbon changes the metallic matrix of the iron; you are welcome to read about it. As the carbon content of the iron increases, the iron’s basic characteristics – its ductility and hardness (among others) – changes. Pure iron, when it takes a heavy impact, tends to deform (bend) to absorb that impact (it is ductile and soft). Increasing the carbon-content makes the iron harder, causing it to both resist bending more and also to hold an edge better (hardness is the key characteristic for holding an edge through use). In the right amount, the steel is springy, bending to absorb impacts but rapidly returning to its original shape. But too much carbon and the steel becomes too hard and not ductile enough, causing it to become brittle.

Compared to the other materials available for tools and weapons, high carbon “spring steel” was essentially the super-material of the pre-modern world. High carbon steel is dramatically harder than iron, such that a good steel blade will bite – often surprisingly deeply – into an iron blade without much damage to itself. Moreover, good steel can take fairly high energy impacts and simply bend to absorb the energy before springing back into its original shape (rather than, as with iron, having plastic deformation, where it bends, but doesn’t bend back – which is still better than breaking, but not much). And for armor, you may recall from our previous look at arrow penetration, a steel plate’s ability to resist puncture is much higher than the same plate made of iron (bronze, by the by, performs about as well as iron, assuming both are work hardened). of course, different applications still prefer different carbon contents; armor, for instance, tended to benefit from somewhat lower carbon content than a sword blade.

It is sometimes contended that the ancients did not know the difference between iron and steel. This is mostly a philological argument based on the infrequency of a technical distinction between the two in ancient languages. Latin authors will frequently use ferrum (iron) to mean both iron and steel; Greek will use σίδηρος (sideros, “iron”) much the same way. The problem here is that high literature in the ancient world – which is almost all of the literature we have – has a strong aversion to technical terms in general; it would do no good for an elite writer to display knowledge more becoming to a tradesman than a senator. That said in a handful of spots, Latin authors use chalybs (from the Greek χάλυψ) to mean steel, as distinct from iron.

More to the point, while our elite authors – who are, at most dilettantish observers of metallurgy, never active participants – may or may not know the difference, ancient artisans clearly did. As Tylecote (op. cit.) notes, we see surface carburization on tools as clearly as 1000 B.C. in the Levant and Egypt, although the extent of its use and intentionality is hard to gauge to due rust and damage. There is no such problem with Gallic metallurgy from at least the La Tène period (450 BCE – 50 B.C.) or Roman metallurgy from c. 200 B.C., because we see evidence of smiths quite deliberately varying carbon content over the different parts of sword-blades (more carbon in the edges, less in the core) through pattern welding, which itself can leave a tell-tale “streaky” appearance to the blade (these streaks can be faked, but there’s little point in faking them if they are not already understood to signify a better weapon). There can be little doubt that the smith who welds a steel edge to an iron core to make a sword blade understands that there is something different about that edge (especially since he cannot, as we can, precisely test the hardness of the two every time – he must know a method that generally produces harder metal and be working from that assumption; high carbon steel, properly produced, can be much harder than iron, as we’ll see).

That said, our ancient – or even medieval – smiths do not understand the chemistry of all of this, of course. Understanding the effects of carbuzation and how to harness that to make better tools must have been something learned through experience and experimentation, not from theoretical knowledge – a thing passed from master to apprentice, with only slight modification in each generation (though it is equally clear that techniques could move quite quickly over cultural boundaries, since smiths with an inferior technique need only imitate a superior one).

Bret Devereaux, “Collections: Iron, How Did They Make It, Part IVa: Steel Yourself”, A Collection of Unmitigated Pedantry, 2020-10-09.

November 15, 2023

“If you cannot make your own pig iron, you are just LARP’n as a real power”

Filed under: Britain, History, Technology — Tags: , , , , — Nicholas @ 04:00

CDR Salamander talks about the importance of an old industry to a modern industrial economy:

We probably need to start this out by explaining exactly what a blast furnace is and why it is important if you want to be a sovereign nation.

First of all, what it does;

    The purpose of blast furnace is to chemically reduce and physically convert iron oxide into liquid iron called “hot metal” The blast furnace is a huge, steel stack lined with refractory brick where iron ore, coke and limestone are charged into the top and preheated air is blown into the bottom. The raw materials require 6 to 8 hours to descend to the bottom of the furnace where they become the final product of liquid slag and liquid iron. These liquid products are drained from the furnace at regular intervals. The hot air that was blown into the bottom of the surface ascends to the top in 6 to 8 seconds after going through numerous chemical reactions. Once the blast furnace is started it continuously runs for four to ten years with only short stops to perform planned maintenance.

Why are blast furnaces so important? Remember the middle part of Billy Joel’s “Iron, coke, chromium steel?”

“Coke” is in essence purified coal, almost pure carbon. It is about the only thing that can at scale make “new” or raw iron, aka “pig iron”. Only coke in a blast furnace can make enough heat to turn iron ore in to iron. You can’t get that heat with an electric furnace.

Pig iron is the foundation of everything that follows that makes an industrial power. If you cannot make your own pig iron, you are just LARP’n as a real power.

It takes a semester at least to understand this, but here is all you really need to know;

    Primary differences

    While the end product from each of these is comparable, there are clearly differences between their capabilities and process. Comparing each type of furnace, the major distinctions are:

    Material source – blast furnaces can melt raw iron ore as well as recycled metal, while electric arc furnaces only melt recycled or scrap metal.

    Power supply – blast furnaces primarily use coke to supply the energy needed to heat up the metal, while EAFs use electricity to accomplish this.

    Environmental impact – because of the fuels used for each, EAFs can produce up to 85% less carbon dioxide than blast furnaces.

    Cost – EAFs cost less than blast furnaces and take up less space in a factory.

    Efficiency – EAFs also reach higher temperatures much faster and can melt and produce products more quickly, as well as having more precise control over the temperature compared to blast furnaces.

We’ll get to that environmental impact later, but the “Material source” section is your money quote.

Without a blast furnace, all you can do is recycle scrap iron.

You cannot fight wars at scale if all you have is scrap iron. You cannot be an industrial hub off of just scrap iron. If you are a nation of any size, you then become economically and security vulnerable at an existential level. I don’t care how much science fiction you get nakid and roll in; wars are won by steel, ungodly amounts of steel.

Where do you get the steel to build your warships? Your tanks? Your factories? Your buildings? Your factories?

If you can only use scrap, then you are simply a scavenger living off the hard work of previous generations. Eventually you run out. You will wind up like the cypress mills of old Florida where, once they ran out of cypress trees, they simply sold off the cypress lumber their mills were constructed of … and then went bankrupt.

October 26, 2023

QotD: Making steel

Filed under: History, Quotations, Science, Technology — Tags: , , — Nicholas @ 01:00

Let’s start with the absolute basics: what is steel? Fundamentally, steel is an alloy of iron and carbon. We can, for the most part, dispense with many modern varieties of steel that involve more complex alloys; things like stainless steel (which add chromium to the mix) were unknown to pre-modern smiths and produced only by accident. Natural alloys of this sort (particularly with manganese) might have been produced by accident where local ores had trace amounts of other metals. This may have led to the common belief among ancient and medieval writers that iron from certain areas was superior to others (steel from Noricum in the Roman period, for instance, had this reputation, note Buchwald, op. cit. for the evidence of this), though I have not seen this proved with chemical studies.

So we are going to limit ourselves here to just carbon and iron. Now in video-game logic, that means you take one “unit” of carbon and one “unit” of iron and bash them together in a fire to make steel. As we’ll see, the process is at least moderately more complicated than that. But more to the point: those proportions are totally wrong. Steel is a combination of iron and carbon, but not equal parts or anything close to it. Instead, the general division goes this way (there are several classification systems but they all have the same general grades):

Below 0.05% carbon or so, we just refer to that as iron. There is going to be some small amount of carbon in most iron objects, picked up in the smelting or forging process.
From 0.05% carbon to 0.25% carbon is mild or low carbon steel.
From about 0.3% to about 0.6%, we might call medium carbon steel, although I see this classification only infrequently.
From 0.6% to around 1.25% carbon is high-carbon steel, also known as spring steel. For most armor, weapons and tools, this is the “good stuff” (but see below on pattern welding).
From 1.25% to 2% are “ultra-high-carbon steels” which, as far as I can tell didn’t see much use in the ancient or medieval world.
Above 2%, you have cast iron or pig iron; excessive carbon makes the steel much too hard and brittle, making it unsuitable for most purposes.

Bret Devereaux, “Collections: Iron, How Did They Make It, Part IVa: Steel Yourself”, A Collection of Unmitigated Pedantry, 2020-10-09.

October 10, 2023

QotD: The production of charcoal in pre-industrial societies

Filed under: Europe, History, Quotations, Technology — Tags: , , , , — Nicholas @ 01:00

Wood, even when dried, contains quite a bit of water and volatile compounds; the former slows the rate of combustion and absorbs the energy, while the latter combusts incompletely, throwing off soot and smoke which contains carbon which would burn, if it had still been in the fire. All of that limits the burning temperature of wood; common woods often burn at most around 800-900°C, which isn’t enough for the tasks we are going to put it to.

Charcoaling solves this problem. By heating the wood in conditions where there isn’t enough air for it to actually ignite and burn, the water is all boiled off and the remaining solid material reduced to lumps of pure carbon, which will burn much hotter (in excess of 1,150°C, which is the target for a bloomery). Moreover, as more or less pure carbon lumps, the charcoal doesn’t have bunches of impurities which might foul our iron (like the sulfur common in mineral coal).

That said, this is a tricky process. The wood needs to be heated around 300-350°C, well above its ignition temperature, but mostly kept from actually burning by lack of oxygen (if you let oxygen in, the wood is going to burn away all of its carbon to CO2, which will, among other things, cause you to miss your emissions target and also remove all of the carbon you need to actually have charcoal), which in practice means the pile needs some oxygen to maintain enough combustion to keep the heat correct, but not so much that it bursts into flame, nor so little that it is totally extinguished. The method for doing this changed little from the ancient world to the medieval period; the systems described by Pliny (NH 16.8.23) and Theophrastus (HP 5.9.4) is the same method we see used in the early modern period.

First, the wood is cut and sawn into logs of fairly moderate size. Branches are removed; the logs need to be straight and smooth because they need to be packed very densely. They are then assembled into a conical pile, with a hollow center shaft; the pile is sometimes dug down into the ground, sometimes assembled at ground-level (as a fun quirk of the ancient evidence, the Latin-language sources generally think of above-ground charcoaling, whereas the Greek-language sources tend to assume a shallow pit is used). The wood pile is then covered in a clay structure referred to a charcoal kiln; this is not a permanent structure, but is instead reconstructed for each charcoal burning. Finally, the hollow center is filled with brushwood or wood-chips to provide the fuel for the actual combustion; this fuel is lit and the shaft almost entirely sealed by an air-tight layer of earth.

The fuel ignites and begins consuming the oxygen from the interior of the kiln, both heating the wood but also stealing the oxygen the wood needs to combust itself. The charcoal burner (often called collier, before that term meant “coal miner” it meant “charcoal burner”) manages the charcoal pile through the process by watching the smoke it emits and using its color to gauge the level of combustion (dark, sooty smoke would indicate that the process wasn’t yet done, while white smoke meant that the combustion was now happening “clean” indicating that the carbonization was finished). The burner can then influence the process by either puncturing or sealing holes in the kiln to increase or decrease airflow, working to achieve a balance where there is just enough oxygen to keep the fuel burning, but not enough that the wood catches fire in earnest. A decent sized kiln typically took about six to eight days to complete the carbonization process. Once it cooled, the kiln could be broken open and the pile of effectively pure carbon extracted.

Raw charcoal generally has to be made fairly close to the point of use, because the mass of carbon is so friable that it is difficult to transport it very far. Modern charcoal (like the cooking charcoal one may get for a grill) is pressed into briquettes using binders, originally using wet clay and later tar or pitch, to make compact, non-friable bricks. This kind of packing seems to have originated with coal-mining; I can find no evidence of its use in the ancient or medieval period with charcoal. As a result, smelting operations, which require truly prodigious amounts of charcoal, had to take place near supplies of wood; Sim and Ridge (op cit.) note that transport beyond 5-6km would degrade the charcoal so badly as to make it worthless; distances below 4km seem to have been more typical. Moving the pre-burned wood was also undesirable because so much material was lost in the charcoaling process, making moving green wood grossly inefficient. Consequently, for instance, we know that when Roman iron-working operations on Elba exhausted the wood supplies there, the iron ore was moved by ship to Populonia, on the coast of Italy to be smelted closer to the wood supply.

It is worth getting a sense of the overall efficiency of this process. Modern charcoaling is more efficient and can often get yields (that is, the mass of the charcoal when compared to the mass of the wood) as high as 40%, but ancient and medieval charcoaling was far less efficient. Sim and Ridge (op cit.) note ratios of initial-mass to the final charcoal ranging from 4:1 to 12:1 (or 25% to 8.3% efficiency), with 7:1 being a typical average (14%).

We can actually get a sense of the labor intensity of this job. Sim and Ridge (op cit.) note that a skilled wood-cutter can cut about a cord of wood in a day, in optimal conditions; a cord is a volume measure, but most woods mass around 4,000lbs (1,814kg) per cord. Constructing the kiln and moving the wood is also likely to take time and while more than one charcoal kiln can be running at once, the operator has to stay with them (and thus cannot be cutting any wood, though a larger operation with multiple assistants might). A single-man operation thus might need 8-10 days to charcoal a cord of wood, which would in turn produce something like 560lbs (253.96kg) of charcoal. A larger operation which has both dedicated wood-cutters and colliers running multiple kilns might be able to cut the man-days-per-cord down to something like 3 or 4, potentially doubling or tripling output (but requiring a number more workers). In short, by and large our sources suggest this was a fairly labor intensive job in order to produce sufficient amounts of charcoal for iron production of any scale.

Bret Devereaux, “Iron, How Did They Make It? Part II, Trees for Blooms”, A Collection of Unmitigated Pedantry, 2020-09-25.

September 14, 2023

I Built a FOOT POWERED Lathe (Most requested video)

Filed under: Tools, Woodworking — Tags: , , , — Nicholas @ 04:00

Rex Krueger
Published 13 Sep 2023

How to make a hand tool spring pole lathe. Almost.
(more…)

September 12, 2023

QotD: The largest input for producing iron in pre-industrial societies

Filed under: Europe, History, Quotations, Technology — Tags: , , , — Nicholas @ 01:00

… let’s start with the single largest input for our entire process, measured in either mass or volume – quite literally the largest input resource by an order of magnitude. That’s right, it’s … Trees

The reader may be pardoned for having gotten to this point expecting to begin with exciting furnaces, bellowing roaring flames and melting all and sundry. The thing is, all of that energy has to come from somewhere and that somewhere is, by and large, wood. Now it is absolutely true that there are other common fuels which were probably frequently experimented with and sometimes used, but don’t seem to have been used widely. Manure, used as cooking and heating fuel in many areas of the world where trees were scarce, doesn’t – to my understanding – reach sufficient temperatures for use in iron-working. Peat seems to have similar problems, although my understanding is it can be reduced to charcoal like wood; I haven’t seen any clear evidence this was often done, although one assumes it must have been tried.

Instead, the fuel I gather most people assume was used (to the point that it is what many video-game crafting systems set for) was coal. The problem with coal is that it has to go through a process of coking in order to create a pure mass of carbon (called “coke”) which is suitable for use. Without that conversion, the coal itself both does not burn hot enough, but also is apt to contain lots of sulfur, which will ruin the metal being made with it, as the iron will absorb the sulfur and produce an inferior alloy (sulfur makes the metal brittle, causing it to break rather than bend, and makes it harder to weld too). Indeed, the reason we know that the Romans in Britain experimented with using local coal this way is that analysis of iron produced at Wilderspool, Cheshire during the Roman period revealed the presence of sulfur in the metal which was likely from the coal on the site.

We have records of early experiments with methods of coking coal in Europe beginning in the late 1500s, but the first truly successful effort was that of Abraham Darby in 1709. Prior to that, it seems that the use of coal in iron-production in Europe was minimal (though coal might be used as a fuel for other things like cooking and home heating). In China, development was more rapid and there is evidence that iron-working was being done with coke as early as the eleventh century. But apart from that, by and large the fuel to create all of the heat we’re going to need is going to come from trees.

And, as we’ll see, really quite a lot of trees. Indeed, a staggering number of trees, if iron production is to be done on a major scale. The good news is we needn’t be too picky about what trees we use; ancient writers go on at length about the very specific best woods for ships, spears, shields, or pikes (fir, cornel, poplar or willow, and ash respectively, for the curious), but are far less picky about fuel-woods. Pinewood seems to have been a consistent preference, both Pliny (NH 33.30) and Theophrastus (HP 5.9.1-3) note it as the easiest to use and Buckwald (op cit.) notes its use in medieval Scandinavia as well. But we are also told that chestnut and fir also work well, and we see a fair bit of birch in the archaeological record. So we have our trees, more or less.

Bret Devereaux, “Iron, How Did They Make It? Part II, Trees for Blooms”, A Collection of Unmitigated Pedantry, 2020-09-25.

August 4, 2023

What Does A Smoothing Plane Do? | Paul Sellers

Filed under: Tools, Woodworking — Tags: , , , — Nicholas @ 02:00

Paul Sellers
Published 7 Apr 2023

We live in an age when fewer and fewer people will ever use a hand plane and may never even see one in use. This super-short video shows how and why we woodworkers still use and rely on hand planes today. They are fast and effective and they reduce the need for sandpaper too because the wood comes out super-smooth and level.
(more…)

August 3, 2023

QotD: Blacksmith forge techniques

Filed under: History, Quotations, Technology, Tools — Tags: , , — Nicholas @ 01:00

Fundamentally, each stage of forging iron revolves around a basic cycle: by heating the metal, the smith makes it soft enough to work (that is, hammer into shape). Technically, it is possible to shape relatively thin masses of iron by hammering when cold (this is called cold-working) but in contrast to other metals (tin, copper and bronze all come to mind) nearly all serious iron-working was done “hot”. In smithing terminology, each of these cycles is referred to as a “heat” – the more heats a given project requires, the more fuel it is going to consume, the longer and more expensive it is going to be (but a skilled smith can often finish the work in fewer heats than an unskilled smith).

A modern blacksmith can gauge the temperature of a metal using sophisticated modern thermometers, but pre-modern smiths had no recourse to such things (and most traditional smiths I’ve met don’t use them anyway). Instead, the temperature of the metal is gauged by looking at its color: as things get hotter, they glow from brown to dark red through to a light red into yellow and then finally white. For iron heated in a forge, a blacksmith can control the temperature of the forge’s fire by controlling the air-input through the bellows (pushing in more air means more combustion, which means more heat, but also more fuel consumed). As we’ve seen, charcoal (and we will need to use charcoal, not wood, to hit the necessary heat required), while not cripplingly expensive, was not trivial to produce either. A skilled smith is thus going to try to do the work in as few heats as possible and not excessively hot either (there are, in fact, other reasons to avoid excessive heats, this is just one).

Once hot the metal can be shaped by hammering. The thickness of a bar of metal could be thickened by upsetting (heating the center of the bar and them hammering down on it like a nail to compress the center, causing it to thicken) or thinned by drawing (hammering out the metal to create a longer, thinner shape). If the required shape needed the metal to be bent it could be heated and bent either over the side of the anvil or against a tool; many anvils had (and still have) a notch in the back where such a tool could be fitted. A good example of this kind of thing would be hammering out a sheet of iron over a dome-shape to create the bowl of a helmet (a task known as “raising” or “sinking” depending on precisely how it is done). A mass of iron can also be divided by heating it at the intended cutting point and then using a hammer and chisel to cut through the hot, soft metal.

But for understanding the entire process, the most important of these operations is the fire weld. Much like bloomery furnaces, the forges available to pre-modern blacksmiths could not reach the temperatures necessary to melt or cast iron, but it was necessary to be able to join smaller bits of iron into larger ones which was done through a fire weld (sometimes called a forge weld). In this process, the iron is heated very hot, typically to a “yellow” or “white” heat (around 1100 °C). The temperature range for the operation is quite precise: too cold and the iron will not weld, too hot and it will “burn” making the weld brittle. Once at the right temperature, the two pieces of iron are put next to each other and hammered into each other with heavy blows. If done properly, the two pieces of metal join completely, leaving a weld that is as strong as every other part of the bar.

Bret Devereaux, “Collections: Iron, How Did They Make It, Part III: Hammer-time”, A Collection of Unmitigated Pedantry, 2020-10-02.

July 27, 2023

“Harvesting” Green Wood from the Side of the Road

Filed under: Tools, Woodworking — Tags: , , — Nicholas @ 04:00

Rex Krueger
Published 26 Jul 2023

It’s just cutting up wood. Right?
(more…)

April 25, 2023

Planing & Scraping Awkward Grain | Paul Sellers

Filed under: Tools, Woodworking — Tags: , , , — Nicholas @ 02:00

Paul Sellers
Published 9 Dec 2022

I try not to be purposely controversial, but often, the wood demands a completely different tactic when it comes to truing and prepping for further steps like panel making and joinery.

Whereas some will say use this bevel-up or that bevel-down plane, use a York pitch, or whatever, the combination of methods and the addition of a #80 cabinet scraper will get you where you need to be, in very short order, but it might just defy convention.

I show you how to tame some very awkward sycamore in this video.
——————–
(more…)

April 16, 2023

Coopering a 36 gallon beer barrel with hand tools

Filed under: History, Tools, Woodworking — Tags: , , — Nicholas @ 02:00

Jamestown Cooperage
Published 28 Jun 2021

I am a practicing traditional cooper who makes barrels, buckets, washtubs, and butter churns by hand. I use mostly traditional skills and handtools to build round, conical wooden vessels for history museums, national parks, and collectors.

(more…)

February 24, 2023

You may call it “interest cycling”, but I call it “normality”

Filed under: Books, Personal, Randomness — Tags: , , — Nicholas @ 03:00

Tom Knighton on what is apparently called “interest cycling” in hobbies and other leisure-time activities:

An article from a late 1950s issue of Model Railroader magazine showing a very small HO scale layout plan. The author later admitted that it’s really too small to do much with after it’s built — without some expansion — but the building can take more time than you might expect and you’d need to develop some new skills to do it properly.

Something many ADHD people do — and maybe others, I don’t know — is what I call “interest cycling”.

Basically, I get insanely hyperfocused on one thing, devoting almost all of my time to this One Thing for weeks at a time, then suddenly stop for whatever reason and then jump onto something else.

As a result, I never become truly great at anything. What’s more, since many of these areas of hyperfocus — one article called them obsessions, and with plenty of cause — require money, I end up needing to spend large quantities of money that I really can’t afford to spend.

But, it’s a need.

And it’s a problem. For a lot of us.

See, I have obligations that surround some of my interests. I’m a group leader for the local chapter of an organization I’m part of, for example, that requires not just me to teach a class once per week, but also to advance my own knowledge.

I still teach the class because others are counting on me to do so, but I haven’t been devoting much time to the rest of it, and I should since there are some tangential benefits to what I’m trying to accomplish here at The Knighton Experiment. Sure, some of it isn’t, but that’s just part of the game, so to speak.

What’s worse is that, so far as I’ve been able to find, there aren’t a lot of ways to combat this.

Which suggests that I’m kind of doomed to go through this cycle for the rest of my life.

Now, there are upsides. I mean, there aren’t many people who could detail both how to build a chest of drawers and a 14th-century transitional plate harness, for example. While I can’t necessarily build either with a high degree of proficiency, I at least know what’s involved.

In my own case, those sound like perfectly normal interests — I share both of them — although since my income dropped precipitously several years ago, I don’t spend money as Tom still does. What I have done, however, is to accumulate future stocks of books on those topics I typically cycle through over time so that when the urge strikes I can at least ameliorate some of the need by reading about rather than actively engaging in the hobby/interest/activity. That might be the difference between Tom’s concern and my experience … I cycle among a number of interests, but not brand new ones all the time.

February 16, 2023

Cut the Sliding Dovetail Joint with common hand tools

Filed under: Tools, Woodworking — Tags: , , — Nicholas @ 04:00

Rex Krueger
Published 15 Feb 2023

There’s another dovetail that you might not know about. Learn to cut it and use it.
(more…)

Older Posts »

Powered by WordPress